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Abstrad. The coloured-noise (Omstein-Uhlembeck process) problem companding to the 
decay process of unstable states, is studied using the nonhnw relaxation time and the 
quasideterministic approach. The effect of the non-Markovian character in this problem as 
well as the statistics of the initial conditions x e  both addressed. Our general result is applied 
to the Landau model as a typical example. 

1. Introduction 

In the last few years much attention has been devoted to the study of the time decay 
of unstable states. The nonlinear relaxation time (NLRT) has itself been proposed as a 
characterization of the time scale associated with such decay process. 

In [l] the behaviour of the relaxation time scale for unstable states induced by Gaussian 
white noise in the context of the NLRT and the quasideterministic (QD) theory [2] is 
widely discussed. There, it is shown that the universal character of this time scale and 
the characteristics of the types of models appear in a natural way. The study of the 
corresponding Gaussian coloured noise (GCN) represents a very interesting case because 
it is not ideal but a noise which exhibits a finite correlation time which can be used to 
model real situations. In this paper, the same framework theory is applied in studying the 
decay of unstable states driven by GCN, although this case has also been analysed by other 
theoretical mechanisms. In fact, [3,4] gives an account of the general formulation of the 
NLRT for describing the decay of unstable states driven by GCN. However, this study is made 
in terms of two Markovian variables and the corresponding Fokker-Planck equation; the 
method is very complicated and, besides, it leads to an approximate result for the NLRT. 

In this work we basically intend to show that the theoretical treatment based on the 
QD approach and the NLRT to characterize the dynamical relaxation of unstable states is 
simpler than the method proposed in [3,4]. In this context, the time scale can be expressed 
in terms of the finite correlation time 5 without any approximation in this parameter and 
of the nonlinear contributions of any unstable model. The study of the QD approach shows 
that the correlation between the noise and system variables at the initial stage arises in 
a natural way. Here we follow an idea suggested in 151 which reports the results for a 
linear stochastic model in terms of the mean-passage times and compares them with results 
obtained by Suzuki [6] and by analogue simulation [7]. In this work we will study the 
case in which the initial state of the system is physically determined by the same noise 
responsible for the decay process and the situations in which the system and noise are 
considered as being statistically independent at the initial state [3,4]. The stmcture of this 
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paper is as follows. In section 2, we define the NLRT and study its connection with the QO 
approach. We study the QD theory and the effect of the initial conditions as well as the 
non-Markovian contributions on the problem. A general expression for the NLRT is obtained 
for any unstable system driven by GCN, in the limit of small noise intensity. In section 3, 
the Landau model is studied as a typical example. The approximations for small correlation 
are specifically analysed in order to compare them with those obtained in [3,4]. Concluding 
remarks are given in section 4. 

2. The NLRT aYld QD approach With GCN 

2.1. The NLRT 
We define the NLRT as in [1,3,4]. In this definition the physical quantity, for which the 
relaxation from an initial state to the corresponding steady state is to be studied, has to be 
specified. I n  this case, such a variable will be the average of the modulus r of the physical 
quantity, i.e. (r) = (x’) .  ?hen, the NLRT reads 

Let us define MO = (r(0)) - (r)Sf, The QO analysis considers the fluctuations around the 
unstable initial state as the mechanism responsible for initiating the relaxation. In this case, 
the initial point (r(0)) is assumed to be a stochastic variable, called h, which takes the 
initial fluctuations of the sysiem into account. The connection between equation (2.1) and 
the QD approach is essentially based on the deterministic evolution of the modulus r given 
by the equation 

i. = u(r) (22)  

where u(r) is given by [ l ]  

which defines, in general, a function with an unstable point at r = 0, and a stable point 
at r = rsI. Here CO = r & a  is a constant and g(r) 2 0 is a polynomial of the form 
g(r) = c6=oa.r*. 

Under these circumstances the NLRT (2.1) can be written as 

Direct substitution of (2.3) into (2.4) gives 

(2.4) 

The first logarithmic term is a universal one which governs the decay time of the unstable 
states. It arises from the study of NLRT (2.1) of the deterministic linear model f = 2ar, as 
suggested in [l]. Then the NLRT for this linear model is 

TL = -“(In MO [ $1) - C (2.6) 
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where C is a constant given by C = (1/2a Mo)[(h') - rst] .  Therefore, the time scale (2.5) 
can be written as 

T = T L + C  - - ( lr" g(r)dr). 
M O  r(0)=h2 

(2.7) 

We can observe from (2.3) that, depending on the type of unstable model, g ( r )  can be 
equal to zero or not. In the case in which g(r) is not equal to zero, it will take into 
account the nonlinear terms of the model. Therefore, the integral term in the time scale 
(2.7) accounts for the nonlinearities of the system and noise plays no essential role. The 
stochastic character of the problem is strictly contained in the terms (lnh*) and (hz )  of TL, 
the statistical properties of which will be determined from QD theory. 

2.2. The QD approach with GCN 

Because of the characteristics of the QD analysis, it will be sufficient to study the transient 
dynamics of the unstable states in terms of the linear Langevin equation for the variable x ;  
i.e. [ I ]  

f = nx + C(t) (2.8) 

where a =- 0 and ( ( t )  is the stochastic force or noise which is assumed to be Gaussian with 
zero mean and an Ornstein-Uhlembeck correlation function 

where D is the noise intensity and 7 is the correlation time. 
The general solution of (2.8) gives 

x ( t )  = h(t)e" 

where 

(2.10) 

h(t) = xo + 1' f(t')e-"'' dt' (2.11) 

and xo = x(0) is the initial value of the dynamical variable x .  Our next step is to show 
that the process h(t) will play the role of an effective initial condition for long times. 

Then the second moment of h(t) can be written in a formal way as 

(h*(r)) = ( x ' ) ~  + 1' ~'(((r')~(s))e-""'+''ds'ds + 2 Jld'(x (0)((s'))e-"s' ds' (2.12) 
0 0  

where the last term shows a dependence on the correlation between the noise B and system 
variables x at time f = 0. This means, in general, that in the initial state of the dynamical 
relaxation both variables are statistically dependent. On the other hand, equation (2.12) 
clearly shows that there are three interesting cases conceming the behaviour of the initial 
correlation between the variables ( x ,  6). 

(i) First. the general case is considered when the initial condition x(0)  is assumed to 
be initially distributed around the unstable state and coupled with the noise [3-51. This 
means that (x (O) f ( t ) )  # 0. This case can be seen in the following physical situation. At 
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time I = 0, the system is in a stable state associated with the value of the control parameter 
a = -ao. Then, for I c 0, the system is described by a linear approximation by the 
dynamics 

i = -aox + f ( f ) .  (2.13) 

The solution of equation (2.13) leads to 

0 
xo = x ( 0 )  = 1, e(ft)emf' dt' (2.14) 

At time t = 0, the control parameter is instantaneously changed from a0 to the value a > 0 
and the system becomes unstable. The exact P ( x ,  f )  of the dynamics (2.13) has already 
been calculated in [SI. In particular, the stationary distribution is Gaussian and has a second 
moment given by 

(2.15) 

Here, the effect of the coloured noise with respect to the white noise ( T  = 0) is 
the renormalization of the noise intensity D by the factor I/@(l + ao?). With these 
characteristics for XO, the process h(t) given in equation (2.12) is then a Gaussian process 
with zero mean and a second moment given by 

(2.16) 

where the last term accounts for the coupling between xo and <(t) at t > 0. So, for times 
af >> 1, the process h ( f )  can be approximated by a Gaussian random variable h ( m )  = h 
with zero mean and variance 

(2.17) 

where the subscript c denotes the coupled case. 
(ii) The second example corresponds to the decoupled case which is considered when the 

initial condition x(0) is again initially distributed. but the distribution is independent of the 
noise. Mathematically, we mean that (x(O)c(t)) = 0. It is also clear from equation (2.12) 
or (2.16) that only the first two tenns survive and that for long times at >> 1, the process 
h(t)  becomes a Gaussian random variable with zero mean and variance 

(2.18) 

Subscript d refers to the decoupled case. Physically, ease (ii) means that the noise sources 
for t -= 0 and f > 0 are not the same or the system starts from a point distributed at random. 

(iii) The third case assumes that the initial condition is not initially distributed; instead it 
is fixed at the unstable state, i.e. x ( 0 )  = 0, and there is no correlation with the noise. Here, 
the only term in equation (2.12) or (2.16) which is not zero is the second one. Therefore, 
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the process h( t )  plays the role of a stochastic initial condition because, for at >> 1, h( t )  
can be approximated by a Gaussian random variable with zero mean and variance 

(2.19) 

Here the subscript f denotes the fixed initial condition. This result shows that the effect 
of the noise correlation time modifies the variance of the effective random initial condition 
and the noise intensity D has been renormalized to the value D / a ( l  f a r ) .  

From equations (2.173-(2.19), we can conclude that the probability distribution for the 
Gaussian random variable h has the following structure 

(2.20) 

where a' = 1/20'. 

2.3. The general expression of the NLRT for small noise interwily 

We can calculate the NLRT (2.7) for any nonlinear unstable system by first evaluating its 
linear approximation (2.6). The constants MO and C can be calculated as follows. If 
( r (0 ) )  = 0 (fixed initial condition) then it is clear that MO = -rst. However, if (r(0))  is 
not equal to zero, we can assume that it is proportional to D according to equation (2.15). 
Now, the second term of MO can be obtained using the PSl associated with the linear 
Stochastic dynamics of the variables [3,4]. In this case, Pst is proportional to 
exp[ax2/2D/(1 -as)] ,  and then the average (r) , t  will be proportional to r,, - D. Therefore, 
once again in the limit of small noise intensity D, MO % -rst. 

We can evaluate the average (hz)  given in the constant C using the marginal probability 
(2.20). We find that (h') = 1/b2 which is proportional to U' and, at the same time, 
proportional to D as can be seen in equations (2.17)-(2.19). This term is also neglected for 
small noise intensity. Finally, the quantity (Inh') in (2.6), according to (2.20). reduces to 
(lnh2) = -ha2  + *(1/2) where * ( x )  is the digamma function [9] and a2 is defined as 
before. 

Therefore, in the framework of our theory, we can characterize the decay of the unstable 
systems driven by GCN by a time scale associated with the quantity ( r )  that in the limit 
of small noise intensity takes the most general expression according to equations (2.6) and 
(2.7) 

and the time scale for the linear model is 

TL = -In - + B(r )  + B~ + o(D). :a (A) (2.22) 

The first term in equation (2.21) contains the dominant contribution for small noise 
intensity D which is independent of the correlation time r .  The term B(r)  contains the non- 
Markovian contribution as well as the type of coupling between the noise and system. BO 
is a typical constant characteristic of the decay process. Finally, the nonlinear contributions 
appear obviously in the integral term of (2.21). So, from our general resuIt, three specific 
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time scales for finite correlation time T can be obtained according to the effect of the initial 
conditions on the system. Each time scale has its own corresponding B ( T )  and BO. 

When thc initial coupling between the noise and the system (i) is taken into account, 
the second term of (221) can be written, with the help of (2.17), as 

and 

On the other hand, if the initial state is distributed around the unstable state but decoupled 
with the noise (ii), then the value of B ( r ) ,  calculated using equation (2.18), is 

(2.25) 

and BO is the same as (2.24). 

independent and the initial condition is fixed (iii). Here we use (2.19) to obtain 
The simplest case under consideration is when both variables are statistically 

1 
B ( r )  = 5 In(1 + az)  (2.26) 

and 

(2.27) 

The time scale (2.22) can be compared with those obtained in 15.61 because the authors 
analysed only the linear model, In this case, their results are the same as (2.22)-(2.24) 
except that the constant (4) which appears in Bo is characteristic of the NLRT [1,3,41. 

3. The Landau model 

We are now going to study the Landau model as a typical example of a nonlinear system. 
We will show that the characteristic times obtained in [3] can be reproduced in the l i t  of 
small correlation time. The Landau model reads 

(3.1) i = a x  - bx3 + 5( t ) ,  

The associated deterministic equation for the modulus r = x 2  can be written as 

i = 2nr - 2br2 (3.2) 

where, in this case, the function u ( r )  of (2.3) is u(r) = 2ar - 2br2. Therefore, r,[ = a / b  
and g(r)  = 0. Then, the integral term of (2.21) disappears. In consequence, the NLRT for 
this model will be 

(3.3) 
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where B ( r )  and Bo will be given according to the cases analysed above. 
In the limit of small correlation time we use the approximation In(1 + x )  % x so that: 
for (i), B(r )  is neglected and equation (3.3) reduces to 

(3.4) 
r S l w  T C  = In [ ] + & ( y  + 21112 - 2a 2D(no+a)  

in (ii). B ( s )  nos/(ao +(I) and for the decoupled case we get 

and finally, for (iii), B ( t )  r / 2  and the time scale reads 
1 1 

T F  = 2a In[%] + 2a ( y  +2In2-  (3.6) 

The equations (3.4H3.6) are exactly the same as those obtained in [3] for the limit 
of small noise intensity and small correlation time. In [4] the comparison with analogue 
experiments and digital simulations of the NLFT is reported. The results obtained are found 
to be in excellent agreement with the theoretical predictions of [3] which in this case are 
the same as those obtained at the end of this section. 

4. Concluding remarks 

In this paper we have established the general result for the time scale (2.21) of the decay 
process of an unstable state driven by Gaussian coloured noise. This result is more general 
than that obtained in [5]  because it contains the nonlinear contributions of any unstable 
model. Our result is exact for finite correlation time, in contrast with the result of [3] 
in which the NLRT is reported in terms of small r .  Again, the universal character of the 
logarithmic term is exhibited and corresponds to the early stages of the decay of the unstable 
state which is dominated by the noise and linear terms. The non-Markovian contribution 
is clearly contained only in the second term B ( r )  of (2.21) which accounts for the type of 
coupling between the system and noise at time t = 0. 

The analogue experiments and digital simulation of the NLRT are reported in [4] with 
excellent agreement with the theoretical results in the limit of small noise and small 
correlation time. In those limits, the theoretical results are the same as those obtained 
in this work. 
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